Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$				
	x	у	z	U_{ea}
P(1)	0.69791 (5)	0.18583 (5)	0.20206 (7)	0.0407
O(1)	0.7500	0.2483 (2)	0.0000	0.0649
C(1)	0.7293 (2)	0.1297 (2)	0.0945 (3)	0.0482
C(2)	0.7500	0.1760 (3)	0.0000	0.0490
C(3)	0.7591 (2)	0.2551 (2)	0.2632 (3)	0.0434
C(4)	0.8247 (2)	0.2398 (2)	0.2609 (3)	0.0531
C(5)	0.8715 (2)	0.2904 (3)	0.3158 (4)	0.0691
C(6)	0.8535 (3)	0.3546 (3)	0.3728 (4)	0.0690
C(7)	0.7890 (3)	0.3693 (2)	0.3744 (3)	0.0657
C(8)	0.7408 (2)	0.3206 (2)	0.3204 (3)	0.0560
C(9)	0.6818 (2)	0.1187 (2)	0.3112 (3)	0.0426
C(10)	0.6705 (2)	0.1465 (2)	0.4155 (3)	0.0536
C(11)	0.6595 (2)	0.0964 (2)	0.5000 (3)	0.0571
C(12)	0.6594 (3)	0.0183 (3)	0.4828 (4)	0.0675
C(13)	0.6701 (4)	-0.0100(3)	0.3810 (4)	0.0971
C(14)	0.6816 (3)	0.0389 (2)	0.2942 (4)	0.0792
C(15)	0.6222 (2)	0.2324 (2)	0.1429 (3)	0.0492
C(16)	0.5640 (2)	0.1943 (3)	0.1458 (4)	0.0710
C(17)	0.5057 (3)	0.2268 (4)	0.0946 (5)	0.0961
C(18)	0.5064 (3)	0.2961 (3)	0.0400 (5)	0.0953
C(19)	0.5629 (3)	0.3348 (3)	0.0361 (5)	0.0920
C(20)	0.6219 (3)	0.3031 (3)	0.0869 (5)	0.0769
S(1)	0.60965 (6)	0.49694 (6)	0.33941 (9)	0.0609
D(2)	0.6513 (2)	0.5262 (3)	0.2651 (3)	0.1137
D(3)	0.6266 (2)	0.5202 (2)	0.4532 (3)	0.1269
D(4)	0.5948 (2)	0.4158 (2)	0.3302 (4)	0.1162
C(21)	0.5332 (4)	0.5408 (5)	0.2930 (8)	0.1251
F(1)	0.4864 (2)	0.5200 (3)	0.3461 (6)	0.1890
F(2)	0.5368 (3)	0.6161 (3)	0.2966 (7)	0.2551
F(3)	0.5134 (3)	0.5211 (4)	0.1830 (5)	0 2397

Table 2. Geometric parameters (Å, °)

		• • • • •	
P(1)—C(1)	1.787 (4)	C(12)C(13)	1.345 (7)
P(1)-C(3)	1.796 (3)	C(13) - C(14)	1.371 (6)
P(1)C(9)	1.794 (3)	C(15)-C(16)	1.365 (6)
P(1)—C(15)	1.792 (4)	C(15)-C(20)	1.377 (5)
O(1)—C(2)	1.233 (6)	C(16) - C(17)	1.374 (7)
C(1)C(2)	1.483 (5)	C(17)C(18)	1.348 (7)
C(3)C(4)	1.376 (6)	C(18)-C(19)	1.343 (8)
C(3)—C(8)	1.389 (5)	C(19)-C(20)	1.377 (6)
C(4)—C(5)	1.380 (6)	S(1)O(2)	1.407 (4)
C(5)—C(6)	1.367 (7)	S(1)—O(3)	1.395 (3)
C(6)—C(7)	1.351 (7)	S(1)-O(4)	1.419 (3)
C(7)—C(8)	1.374 (6)	S(1)-C(21)	1.752 (8)
C(9)C(10)	1.373 (5)	C(21) - F(1)	1.274 (9)
C(9)—C(14)	1.376 (5)	C(21)-F(2)	1.288 (9)
C(10)—C(11)	1.360 (5)	C(21)—F(3)	1.345 (9)
C(11)—C(12)	1.348 (6)		.,
C(3)—P(1)—C(1)	109.5 (2)	C(14)-C(13)-C(12)	121.4 (4)
C(9) - P(1) - C(1)	107.1 (2)	C(13)C(14)C(9)	119.4 (4)
C(9) - P(1) - C(3)	109.0 (1)	C(16)—C(15)—P(1)	119.4 (3)
C(15) - P(1) - C(1)	110.1 (2)	C(20) - C(15) - P(1)	121.2 (3)
C(15) - P(1) - C(3)	112.2 (2)	C(20) - C(15) - C(16)	119.3 (4)
C(15)—P(1)—C(9)	108.7 (2)	C(17)-C(16)-C(15)	120.3 (4)
C(2) - C(1) - P(1)	115.1 (3)	C(18)C(17)C(16)	119.6 (5)
C(1) - C(2) - O(1)	122.3 (2)	C(19)-C(18)-C(17)	121.3 (5)
$C(1) - C(2) - C(1^{1})$	115.5 (4)	C(20)C(19)-C(18)	119.9 (5)
C(4) - C(3) - P(1)	119.6 (3)	C(19)-C(20)-C(15)	119.6 (5)
C(8) - C(3) - P(1)	120.2 (3)	O(3)—S(1)—O(2)	114.5 (3)
C(8)C(3)C(4)	120.0 (3)	O(4)-S(1)-O(2)	116.3 (3)
C(5)—C(4)—C(3)	119.1 (4)	O(4)—S(1)—O(3)	111.8 (3)
C(6)—C(5)—C(4)	120.9 (5)	C(21)—S(1)—O(2)	104.7 (4)
C(7) - C(6) - C(5)	119.7 (4)	C(21)—S(1)—O(3)	105.2 (4)
C(8)—C(7)—C(6)	121.3 (4)	C(21)—S(1)—O(4)	102.7 (3)
C(7) - C(8) - C(3)	119.0 (4)	F(1) - C(21) - S(1)	115.7 (6)
C(10) - C(9) - P(1)	119.9 (3)	F(2) - C(21) - S(1)	111.8 (6)
C(14) - C(9) - P(1)	121.6 (3)	F(2)C(21)F(1)	107.8 (9)
C(14) - C(9) - C(10)	118.5 (4)	F(3) - C(21) - S(1)	108.8 (7)

© 1993 International Union of Crystallography Printed in Great Britain - all rights reserved

C(11) - C(10) - C(9)	120.6 (4)	F(3) - C(21) - F(1)	105.4 (7)		
C(12)-C(11)-C(10)	120.6 (4)	F(3)-C(21)-F(2)	106.8 (7)		
C(13)-C(12)-C(11)	119.5 (4)		• • •		
Symmetry code: (i) $\frac{3}{5} - x$, y, $-z$.					

metry code: (i)
$$\frac{3}{2} - x, y, -z$$
.

Reaction of trifluoromethane sulfonic acid anhydride with 1,3-bis(triphenylphosphoranylidene)acetone in benzene, followed by fractional crystallization in dichloromethane and diethyl ether, yielded the title compound as well as 1,3propadienediylbis(triphenylphosphonium) bis(trifluoromethanesulfonate) (Bram, Burzlaff, Hadawi & Bestmann, 1992).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71102 (19 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SH1045]

References

- Bestmann, H. J. (1965). Angew. Chem. Int. Ed. Engl. 4, 583-584, 645-646, 830-831.
- Bestmann, H. J. & Schlosser, W. (1979). Synthesis, pp. 201-202.
- Bram, A., Burzlaff, H., Hadawi, D. & Bestmann, H. J. (1992). Acta Cryst. C48, 1904-1906.
- Burla, M. C., Camalli, M., Cascerano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.
- Burzlaff, H. & Rothammel, W. (1988). Proceedings of CIC Meeting, Tübingen, pp. 415-421. Berlin: Springer Verlag.
- Cooke, M. P. & Goswami, R. (1977). J. Am. Chem. Soc. 99, 642-644. Gomm, M. (1991). Private communication.

Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS User Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1993). C49, 1410-1412

Structure of 2-(α -Hydroxybenzyl)-8methyl-8-azabicyclo[3.2.1]octan-3-one

JUN LI, J. WILSON QUAIL, GUO ZHU ZHENG AND MAREK MAJEWSKI

Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W0

(Received 21 April 1992; accepted 24 December 1992)

Abstract

The unambiguous structure of the title compound (which was formed in the reaction of the lithium enolate of tropinone with benzaldehyde) has been determined to be the exo-anti diastereoisomer. The piperidine ring adopts a flattened-chair conformation with the carbonyl group pushed away from the ethylene bridge. There is an intermolecular hydrogen bond between the hydroxyl group and the N atom which replaces the intramolecular O— $H \cdot \cdot \cdot N$ hydrogen bond indicated by solution NMR data.

Comment

During a study investigating the enantioselective deprotonation of ketones of C_s symmetry, we deprotonated tropinone (1) with lithium diisopropylamide and reacted the resulting racemic enolate with benzaldehyde (2) producing selectively a racemic mixture of only one of four possible diastereoisomeric aldols (3*a*)–(3*d*) (Majewski & Zheng, 1991), as shown in the scheme below. Compounds of this type are important intermediates in the synthesis of tropane alkaloids (Lounasmaa, 1988).

(3a) exo-anti (3b) exo-syn (3c) endo-syn (3d) endo-anti

The vicinal coupling constant, J_{AB} , in the NMR spectrum of product (3) was 3.0 Hz. It is well known (Heathcock, 1984) that aldols usually exist in solution in a hydrogen-bonded form (OH forms an intramolecular hydrogen bond to the carbonyl O atom) and, as a result, the syn (erythro) aldols usually have J_{AB} in the range 2-6 Hz, whereas for the anti (threo) aldols J_{AB} is normally 7-10 Hz (Heathcock, 1984). The small coupling constant seemed to suggest the syn stereochemistry for our product [(3b) or (3c)]. However, since it is also well known that cyclic enolates yield predominantly anti aldols (Majewski & Gleave, 1989), we hypothesized that the structure of our product should be *exo-anti* (3*a*). We reasoned that the unusually small vicinal coupling constant, J_{AB} , may result from the hydrogen bonding between the OH and the N atom in (3a) (in solution). Examination of models has shown that the conformer of (3a), in which such hydrogen bonding existed, would have a dihedral angle H2-C2-C1'-H1' of 66°; this would explain the small J_{AB} value (Silverstein, Bassler & Morrill, 1991). Nuclear Overhauser enhancement measurements on a derivative indicated agreement with structure (3a)(Majewski & Zheng, 1991). It should be noted that even though NMR spectroscopy has been used extensively in the analysis of the structures and conformations of tropane alkaloids, some results have been questioned (Lounasmaa, 1988; Bachmann & von Philipsborn, 1972). Unambiguous determination of the structure of (3) by X-ray crystallography therefore seemed necessary, especially if the NMR data for this compound are to be used for fu-

ture structure- and conformation-elucidation studies of tropane alkaloids.

A stereoscopic view of the title compound is illustrated in Fig. 1. The bond distances and angles lie within the normal range. The chair-type piperidine ring (C1-C2-C3-C4-C5-N) is significantly flattened at C3; the atoms C1, C2, C4, C5 are coplanar to within 0.0125 Å, with C3 and N displaced on opposite sides of this plane by -0.506 and +0.859 Å, respectively. Similar conformations were observed in earlier studies (Jones & Hamor, 1985; Hamor & Kings, 1980; Vooren, Schenk & MacGillavry, 1970). The five-membered ring C1-N-C5-C6-C7 is in the envelope conformation; C1, C5, C6, C7 are coplanar to within 0.0046 Å with the N atom displaced by +0.65 Å from this plane.

Fig. 1. Stereoscopic view of the title molecule.

The reaction of the lithium enolate of tropinone with benzaldehyde yields the *exo-anti* diastereoisomer of 2-(α -hydroxybenzyl)-8-methyl-8-azabicyclo[3.2.1]octan-3-one. There is no intramolecular hydrogen bonding in this structure, but there is an intermolecular hydrogen bond between O1 and Nⁱ [O1...Nⁱ 2.842 (3) Å, O1-H1O...Nⁱ 168 (3)°; symmetry code: (i) $\frac{1}{2}$ +x, $\frac{3}{2}$ - y, 1 - z]. The existence of an intermolecular hydrogen bond between O1 and Nⁱ indicates that an O-H...N bond is preferred over an O-H...O(carbonyl) bond in the title compound. The intermolecular hydrogen bond is apparently broken in solution by a rotation of the C2--C1' bond and is replaced by an intramolecular hydrogen bond between O1 and N, as suggested by the NMR evidence.

Experimental

Crystal data	
C ₁₅ H ₁₉ NO ₂	Cu $K\alpha$ radiation
$M_r = 245.3$	λ = 1.5418 Å
Orthorhombic	Cell parameters from 25
Pbca	reflections
a = 8.1213 (7) Å	$\theta = 19.03 - 39.72^{\circ}$
b = 17.514 (3) Å	μ = 6.470 mm ⁻¹
<i>c</i> = 18.903 (3) Å	T = 287 K

V = 2688.7 (7) Å ³	Prism		e 2. Geometri	ometric parameters (Å, °)		
Z = 8 $D_x = 1.212 \text{ Mg m}^{-3}$ $D_m = 1.234 \text{ Mg m}^{-3}$ Density measured by flota- tion	$0.42 \times 0.25 \times 0.15$ mm Colorless	C1-C2 C1-C7 C1-N C2-C3 C2-C1' C3-C4	1.537 (3) 1.551 (4) 1.474 (3) 1.514 (3) 1.541 (3) 1.597 (4)	$\begin{array}{c} C8 - N \\ C1' - C2' \\ C1' - 01 \\ C2' - C3' \\ C2' - C7' \\ C3' - C4' \end{array}$	1.480 (4) 1.512 (3) 1.423 (3) 1.394 (4) 1.375 (3)	
Data collection		C3-02 C4-C5 C5-C6	1.507 (4) 1.210 (4) 1.517 (5) 1.542 (4)	C4'-C5' C5'-C6' C6'C7'	1.378 (5) 1.367 (5) 1.396 (4)	
Enraf-Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.002$ $\theta_{\text{max}} = 74.8^{\circ}$	C5—N C6—C7	1.481 (3) 1.534 (4)	01—H10	0.93 (4)	
$\omega/2\theta$ scans Absorption correction: none	$h = 0 \rightarrow 10$ $k = 0 \rightarrow 21$ $l = 0 \rightarrow 23$	C2C1C7 C2C1N C7C1N C1C2C3	110.2 (2) 109.4 (2) 105.1 (2) 109.1 (2)	$\begin{array}{c} C2-C1'-C2'\\ C2-C1'-01\\ C2'-C1'-01\\ C1'-C2'-C3'\end{array}$	113.1 (2) 106.5 (2) 111.1 (2) 120.6 (2)	
2845 measured reflections 2752 independent reflections 1895 observed reflections $[l > 2.0\sigma(I)]$	3 standard reflections frequency: 333 min intensity variation: none	C1C2C1' C3C2C1' C2C3C4 C2C3O2 C4C3O2	112.8 (2) 110.5 (2) 115.3 (2) 121.7 (2) 123.0 (2)	C1'-C2'-C7' C3'-C2'-C7' C2'-C3'-C4' C3'-C4'-C5' C4'-C5'-C6'	120.3 (2) 119.0 (2) 120.2 (3) 120.1 (3) 120.4 (3)	
Refinement		C3C4C5 C4C5C6 C4C5N C6C5N	110.4 (2) 111.0 (3) 107.8 (2) 105.4 (2)	C5'C6'C7' C2'C7'C6' C1NC5 C1NC8	119.8 (3) 120.6 (3) 101.0 (2) 111.0 (2)	
Refinement on F Final $R = 0.048$	$\Delta \rho_{\text{max}} = 0.374 \text{ e } \text{\AA}^{-3}$	C5—C6—C7 C1—C7—C6	104.0 (2) 103.9 (2)	C5—N—C8	112.4 (2)	

Refinement on F	$\Delta \rho_{\rm max}$ = 0.374 e Å ⁻³
Final $R = 0.048$	$\Delta \rho_{\rm min} = -0.317 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.059	Extinction correction: Gaus-
5 = 2.619	sian (Zachariasen)
1895 reflections	Extinction coefficient:
240 parameters	9 (2)×10 ⁻⁶
All H-atom parameters re-	Atomic scattering factors
fined	from International Tables
$w = 1/\sigma^2(F_o)$	for X-ray Crystallogra-
$(\Delta/\sigma)_{\rm max} = 0.123$	phy (1974, Vol. IV, Table
	2.2B)

Data collection: Enraf-Nonius (1981) CAD-4 PDP8 software. Cell refinement: Enraf-Nonius (1981) CAD-4 PDP8 software. Data reduction: Xtal DIFDAT, ADDREF, SORTRF (Hall & Stewart, 1990). Program(s) used to solve structure: Xtal GENEV, GENSIN, GENTAN. Program(s) used to refine structure: Xtal CRYLSQ. Molecular graphics: Xtal ORTEP, PLOTX. Software used to prepare material for publication: Xtal BONDLA, LISTFC, CIFIO.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²) $U_{r} = \frac{1}{2} \sum_{i} \sum_{j} U_{i} a^{*} a^{*} a^{*}$

$\mathcal{O}_{eq} \sim \frac{1}{3} \mathcal{D}_i \mathcal{D}_j \mathcal{O}_{ij} \mathbf{a}_i \cdot \mathbf{a}_j$					
	x	у	z	U_{eq}	
C1	0.8803 (3)	0.5884 (1)	0.4402(1)	0.044 (1)	
C2	0.7101 (3)	0.6268 (1)	0.4392(1)	0.044 (1)	
C3	0.6870 (4)	0.6672(1)	0.3691 (1)	0.058 (2)	
C4	0.8361 (4)	0.7092 (2)	0.3419 (2)	0.069 (2)	
C5	0.9898 (4)	0.6612 (2)	0.3519(1)	0.063 (2)	
C6	0.9696 (5)	0.5819 (2)	0.3176 (2)	0.070 (2)	
27	0.8970 (4)	0.5325 (2)	0.3770(1)	0.059 (2)	
C8	1.1737 (4)	0.6160 (2)	0.4465 (2)	0.073 (2)	
C1'	0.6852 (3)	0.6829(1)	0.5011 (1)	0.041 (1)	
22 ′	0.6989 (3)	0.6452(1)	0.5728(1)	0.042(1)	
23'	0.5879 (3)	0.5885 (2)	0.5931 (1)	0.061 (2)	
C4'	0.5989 (4)	0.5557 (2)	0.6594 (2)	0.078 (2)	
C5'	0.7177 (5)	0.5800 (2)	0.7063 (2)	0.076 (2)	
C6'	0.8273 (4)	0.6355 (2)	0.6872(1)	0.068 (2)	
27'	0.8181 (3)	0.6680(1)	0.6199 (1)	0.052 (1)	
Ň	1.0089 (2)	0.6465 (1)	0.4287(1)	0.049(1)	
D1	0.5270 (2)	0.7162 (1)	0.49155 (9)	0.0516 (9)	
02	0.5594 (3)	0.6629(1)	0.3363 (1)	0.090 (2)	
	• /		• • •	• •	

The θ -scan width was $(0.85 + 0.14\tan\theta)^{\circ}$ with a θ -scan rate of $0.37-3.38^{\circ}$ min⁻¹. The scan angle was extended 25% on each side of each peak for background measurement. Refinement was by full-matrix least-squares methods.

We thank Dr L. T. J. Delbaere for the use of facilities for collecting data, Dr L. Prasad and Mr Z. Jia for their valuable suggestions, and the University of Saskatchewan for the award of a graduate scholarship (to JL).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55991 (20 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1010]

References

- Bachmann, K. & von Philipsborn, W. (1972). Helv. Chim. Acta, 55, 68-69.
- Enraf-Nonius (1981). CAD-4 operation software. Enraf-Nonius, Delft, The Netherlands.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Users Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Hamor, T. A. & Kings, N. (1980). Acta Cryst. B36, 3153-3155.
- Heathcock, C. H. (1984). In Asymmetric Synthesis, Vol. 3, ch. 2, edited by J. D. Morrison. New York: Academic Press.
- Jones, R. H. & Hamor, T. A. (1985). Acta Cryst. C41, 620-622.
- Lounasmaa, M. (1988). *The Alkaloids*, Vol. 33, edited by A. Brossi, pp. 2-74. San Diego: Academic Press.
- Majewski, M. & Gleave, D. M. (1989). Tetrahedron Lett. 30, 5681-5684.

Majewski, M. & Zheng, G. Z. (1991). Synlett, p. 173.

Silverstein, R., Bassler, G. C. & Morrill, T. C. (1991). Spectrometric Identification of Organic Compounds, 5th ed., p. 197. Toronto: Wiley. Vooren, M., Schenk, H. & MacGillavry, C. H. (1970). Acta Cryst. B26, 1483-1487.